Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(20): 201801, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36461983

RESUMEN

This Letter presents the results from the MiniBooNE experiment within a full "3+1" scenario where one sterile neutrino is introduced to the three-active-neutrino picture. In addition to electron-neutrino appearance at short baselines, this scenario also allows for disappearance of the muon-neutrino and electron-neutrino fluxes in the Booster Neutrino Beam, which is shared by the MicroBooNE experiment. We present the 3+1 fit to the MiniBooNE electron-(anti)neutrino and muon-(anti)neutrino data alone and in combination with MicroBooNE electron-neutrino data. The best-fit parameters of the combined fit with the exclusive charged-current quasielastic analysis (inclusive analysis) are Δm^{2}=0.209 eV^{2}(0.033 eV^{2}), |U_{e4}|^{2}=0.016(0.500), |U_{µ4}|^{2}=0.500(0.500), and sin^{2}(2θ_{µe})=0.0316(1.0). Comparing the no-oscillation scenario to the 3+1 model, the data prefer the 3+1 model with a Δχ^{2}/d.o.f.=24.7/3(17.3/3), a 4.3σ(3.4σ) preference assuming the asymptotic approximation given by Wilks's theorem.

2.
Phys Rev Lett ; 129(2): 021801, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35867467

RESUMEN

We report the first results of a search for leptophobic dark matter (DM) from the Coherent-CAPTAIN-Mills (CCM) liquid argon (LAr) detector. An engineering run with 120 photomultiplier tubes (PMTs) and 17.9×10^{20} protons on target (POT) was performed in fall 2019 to study the characteristics of the CCM detector. The operation of this 10-ton detector was strictly light based with a threshold of 50 keV and used coherent elastic scattering off argon nuclei to detect DM. Despite only 1.5 months of accumulated luminosity, contaminated LAr, and nonoptimized shielding, CCM's first engineering run has already achieved sensitivity to previously unexplored parameter space of light dark matter models with a baryonic vector portal. With an expected background of 115 005 events, we observe 115 005+16.5 events which is compatible with background expectations. For a benchmark mediator-to-DM mass ratio of m_{V_{B}}/m_{χ}=2.1, DM masses within the range 9 MeV≲m_{χ}≲50 MeV are excluded at 90% C. L. in the leptophobic model after applying the Feldman-Cousins test statistic. CCM's upgraded run with 200 PMTs, filtered LAr, improved shielding, and 10 times more POT will be able to exclude the remaining thermal relic density parameter space of this model, as well as probe new parameter space of other leptophobic DM models.

3.
Phys Rev Lett ; 121(22): 221801, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30547637

RESUMEN

The MiniBooNE experiment at Fermilab reports results from an analysis of ν_{e} appearance data from 12.84×10^{20} protons on target in neutrino mode, an increase of approximately a factor of 2 over previously reported results. A ν_{e} charged-current quasielastic event excess of 381.2±85.2 events (4.5σ) is observed in the energy range 200

4.
Phys Rev Lett ; 120(14): 141802, 2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29694148

RESUMEN

We report the first measurement of monoenergetic muon neutrino charged current interactions. MiniBooNE has isolated 236 MeV muon neutrino events originating from charged kaon decay at rest (K^{+}→µ^{+}ν_{µ}) at the NuMI beamline absorber. These signal ν_{µ}-carbon events are distinguished from primarily pion decay in flight ν_{µ} and ν[over ¯]_{µ} backgrounds produced at the target station and decay pipe using their arrival time and reconstructed muon energy. The significance of the signal observation is at the 3.9σ level. The muon kinetic energy, neutrino-nucleus energy transfer (ω=E_{ν}-E_{µ}), and total cross section for these events are extracted. This result is the first known-energy, weak-interaction-only probe of the nucleus to yield a measurement of ω using neutrinos, a quantity thus far only accessible through electron scattering.

5.
Phys Rev Lett ; 110(16): 161801, 2013 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-23679593

RESUMEN

The MiniBooNE experiment at Fermilab reports results from an analysis of ν[over ¯](e) appearance data from 11.27×10(20) protons on target in the antineutrino mode, an increase of approximately a factor of 2 over the previously reported results. An event excess of 78.4±28.5 events (2.8σ) is observed in the energy range 200

6.
Phys Rev Lett ; 105(18): 181801, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-21231096

RESUMEN

The MiniBooNE experiment at Fermilab reports results from a search for ¯ν_{µ}→¯ν_{e} oscillations, using a data sample corresponding to 5.66×10²° protons on target. An excess of 20.9±14.0 events is observed in the energy range 475

7.
Phys Rev Lett ; 103(11): 111801, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19792365

RESUMEN

The MiniBooNE Collaboration reports initial results from a search for nu(mu)-->nu(e) oscillations. A signal-blind analysis was performed using a data sample corresponding to 3.39x10(20) protons on target. The data are consistent with background prediction across the full range of neutrino energy reconstructed assuming quasielastic scattering, 200

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...